

E	Error Sources	: Systematic	Biases
	Flying Height	Flying Direction	Look Angle
Boresighting Offset Bias	Effect is independent of the Flying Height	Effect is dependent on the Flying Direction (Except ΔZ)	Effect is independent of the Look Angle
Boresighting Angular Bias	Effect Increases with the Flying Height	Effect Changes with the Flying Direction	Effect Changes with the Look Angle (Except ΔX)
Laser Beam Range Bias	Effect is independent of the Flying Height	Effect is independent of the Flying Direction	Effect Depends on the Look Angle (Except ΔY)
Laser Beam Angular Bias	Effect Increases with the Flying Height	Effect Changes with the Flying Direction (Except ∆Y)	Effect Changes with the Look Angle (Except ΔX)
DPRG	 Assumption: Linear Scanr Constant Att Flying Direct Flat horizont 	her titude & Straight Line Traje tion Parallel to the Y axis tal terrain	ctory

LiDAR QA: System Calibration Possible systematic errors: Spatial and rotational offsets between the various system components. Range bias. Angular mirror bias. Calibration requires some control information. What are the most appropriate primitives? The appropriate configuration of the control information and the flight mission.

DPRG

• Th dis str	e avei crepa ips	rage and standa incies between 1	rd deviation of the estima 100 points in two overlapp	ited bing
		Average (m)	Standard deviation (m)	
	Х	0.45	±0.36	
	Y	0.50	±0.37	
	Ζ	0.22	±0.28	

	Strips 2 & 3	Strip 3&4	Strips 2 & 4
Transformation parameter / # of Patches	21	22	22
Scale Factor	1.0000	0.9996	0.9995
X _T (m)	-0.52	0.72	0.08
Y _T (m)	-0.13	-0.17	-0.21
Z _T (m)	0.05	0.09	0.14
Ω (°)	0.0289	-0.0561	-0.0802
Φ (°)	0.0111	-0.0139	-0.0342
K (°)	0.0364	0.0288	0.0784
Normal Distance, m (After)	0.04	0.03	0.04

	IQC: LiDAR	Quality	/ Contro	l (#3)	
		Strips 2 & 3	Strips 3 & 4	Strips 2 & 4	
	Transformation parameter / # of Lines	24	36	24	
	Scale Factor	1.0002	1.0006	1.0013	
	$X_r(m)$	-0.56	0.75	0.10	-
	$Y_T(m)$	0.04	-0.17	-0.16	Т
	Z _r (m)	0.03	0.05	0.13	
	Ω(°)	0.0205	-0.0386	-0.0147	
	Φ (°)	0.0062	-0.0125	-0.0073	
	K (*)	0.0261	-0.0145	-0.0113	
	Normal Distance, m (Before)	0.38 ± 0.22	0.49 ± 0.24	0.26 ± 0.14	
	Normal Distance, m (After)	0.18 ± 0.19	0.18 ± 0.18	0.16 ± 0.11	
	Estimated transformation p	arameters using verlapping stri	g conjugate linear ps	r features in	
•	DPRG Digital Photogrammetry Research Group	43		— Ayman F. Habib —	J

	Strips 2& 3	Strips 3& 4	Strips 2& 4
Scale Factor	0.9996	0.9998	0.9993
$\mathbf{X}_{\mathrm{T}}(\mathrm{m})$	-0.55	0.75	0.19
$Y_{T}(m)$	-0.06	-0.13	-0.18
$Z_{T}(m)$	0.03	0.12	0.16
Ω (°)	0.0080	-0.0267	-0.0213
Φ (°)	0.0059	-0.0088	-0.0053
K (°)	-0.0009	-0.0003	0.0012
Average Normal Dist., m	0.09	0.09	0.10

IQC: L1DA	AR Quality	Control	(#5)
	Strips 2& 3	Strips 3& 4	Strips 2& 4
Scale Factor	0.9997	1.0002	0.9994
$X_{T}(m)$	-0.47	0.70	0.26
$Y_{T}(m)$	-0.27	-0.32	-0.41
Z _T (m)	0.00	0.04	0.15
Ω (°)	0.0132	-0.0394	-0.0302
Φ (°)	0.0082	-0.0141	-0.0059
K (°)	0.0039	-0.0007	-0.0100
Average Distance, m	0.51	0.51	0.60

· · · · ·								,		
			Est	imate	d Tra	nsfori	nation j	parame	ters	
	Metho	Parameters	SF	XT (m)	YT (m)	ZT (m)	Omega (deg)	Phi (deg)	Kappa (deg)	Av_Dist Ndist(m)
	Patches method		1.00019	-0.02	-0.02	0.02	-0.0151	0.0023	0.0052	0.03
00002	202 T	Collinearity	1.00009	0.04	-0.08	0.02	-0.0132	0.0020	0.0039	0.10
&	Lines	endpoint	0.99995	0.02	-0.02	0.01	-0.0084	-0.0003	0.0068	0.08
08804	ICPatch		0.99990	-0.01	-0.12	0.01	-0.0023	-0.0009	0.0029	0.04
		ICPoint	0.99980	-0.08	-0.27	0.00	-0.0036	-0.0011	0.0022	0.51
		Consiste	ency ir	n the	resu met	lts co hods	oming	from	variou	S

			F	Estima	ted Tra	nsforr	nation pa	aramete	rs	Ī
	Metho	Parameters	SF	XT (m)	YT (m)	ZT (m)	Omega (deg)	Phi (deg)	Kappa (deg)	Av_Dist Ndist(m)
	Pat	Patches method		0.76	0.14	-0.01	0.0185	0.0060	0.0175	0.03
	Lines	Collinearity	1.00037	0.80	0.10	-0.03	0.0156	0.0022	-0.0011	0.16
& &		End point	0.99987	0.80	0.25	-0.02	0.0164	0.0054	0.0270	0.13
08805		ICPatch	1.00010	0.86	0.10	-0.02	0.0039	0.0006	0.0073	0.04
		ICPoint		0.80	-0.08	-0.04	0.0089	0.0004	0.0080	0.57
		Consister	ncy in	the r	esult	s con	ning fr	om va	rious	

LiDAR Quality Control (IQC & EQC) The previous IQC measures can be used for EQC. In such a case, instead of comparing overlapping strips, the EQC can be evaluated by comparing the

- strips, the EQC can be evaluated by comparing the LiDAR point cloud to an independently collected surface (ground truth).
- Approaches 2-4 will lead to more reliable estimation of the internal and external quality of the LiDAR data.
- The ICPatch approach is preferred since it is based on the original/raw LiDAR point cloud without the need for any preprocessing.

DPRG http://ilmbwww.gov.bc.ca/bmgs/pba/trim/specs

Concluding Remarks

- QA and QC procedures are essential for any spatial data acquisition system.
- QA of LiDAR data is only possible for a transparent system.
 - Availability of the raw data.
- Quality control of LiDAR data can be conducted by the end user.
- LiDAR derived data is not based on adjustment procedure.
- Quality control measures, which are typically used in photogrammetry, are not applicable.

71

Ayman F. Habib

DPRG Alternative procedures are needed.

